

# Commercial Storage

Multi-building solar & storage















### Smart Energy Lab

> Portfolios > Smart Energy Lab



















## Why add batteries to commercial solar?

- maximum demand charges
- emergency backup power
- self-use of surplus solar
- power quality
- utility capacity limitations
- early adopter
- leaving the grid (more in my next presentation at 3:25pm today)











## Assess maximum demand



# When is backup needed?

How much (kVA) and for how long (kWh)?



## Get the load data





# Analyse the tariff structures













## Average Daily Performance



#### **BATTERY CAPACITY**

Battery capacity: 300 kWh
Battery DoD: 60 %

#### **BATTERY CYCLING**

Year 1 cycles: 38
Battery lifetime cycles: 1410

#### **BATTERY LIFETIME**

Battery lifetime: Battery lifetime energy: 19 years 204 MWh



## Average Daily Performance



#### BATTERY CAPACITY

**Battery capacity:** 300 kWh **Battery DoD:** 60 %

#### **BATTERY CYCLING**

Year 1 cycles: 38
Battery lifetime cycles: 1410

#### BATTERY LIFETIME

Battery lifetime: 19 years
Battery lifetime energy: 204 MWh



## Self-consumption of solar modelled

Solar Produced



**Consumption Source** 



Nominal System Power: 42.24 kW

|                        | DAILY      | ANNUAL       |
|------------------------|------------|--------------|
| Av. Energy Production: | 139.3 kWh  | 50,828 kWh   |
| Specific Yield:        | 3.3 kWh/kW | 1,203 kWh/kW |



# Battery Backup Hours Start Time Month Generate chart 7pm Hour of day



# Average Daily Performance Time range Month Day Monthly Generate chart January Hour of day

#### **BATTERY CAPACITY**

**Battery capacity:** 300 kWh **Battery DoD:** 60 %

#### **BATTERY CYCLING**

Year 1 cycles: 38

Battery lifetime cycles: 1410

#### BATTERY LIFETIME

Battery lifetime: Battery lifetime energy: 19 years 204 MWh



# Use roof layout tools







#### YEAR ONE CASHFLOW

**Investment:** \$111,638.98

**\$/watt:** \$2.64

**STC credit:** \$25,550.00

**Est. Yr 1 savings:** \$8,702.18 (105%)

#### **RETURN METRICS**

Payback time: 10 yrs 10 mths

Internal rate of return: 6.7%

Levelised cost of energy: 12.67 c/kWh

#### LIFETIME METRICS

Est. lifetime savings: \$136,495.11

Net present value: \$56,013.76

CO<sup>2</sup> savings:

\$56,013.76 59,178 kg (C) p.a.





# SELECTING & SIZING BATTERY

## 6. SELECTING & SIZING BATTERY

- Daily load energy required
- Battery system voltage
- Load sub-system efficiency
- Amp-hour demand (typically daily except if blackout protection)
- Days of Autonomy (≥2 days if off-grid)
- Amp-hour capacity required @ Cx

## BATTERY SIZING EQUATIONS (SIMPLIFIED)

- A daily load energy (Wh)
- ▶ B battery system voltage (V)
- C load sub-system efficiency (0.xx) (wiring, battery round-trip, and inverter efficiency)
- ▶ D Amp-hour demand =  $A \div B \div C$
- ► E Amp-hour capacity = (D x DoA) ÷ DoD max. NB. to convert to  $kWh = (Ah \times V) \div 1000$



**AS/NZS 4509.2** 

## BATTERY SIZING WORKED EXAMPLE

- A daily load energy 10,000Wh
- B battery system 48V
- C load sub-system efficiency 0.74
- D Amp-hour demand =  $10,000 \div 48 \div 0.74$ = 282Ah
- E Amp-hour capacity =  $(282 \times 1) \div 0.9$ 
  - $= 313Ah @C_{10}$
  - $= 313 \times 48 = 15$ kWh (total capacity)



# SIZING THE PV ARRAY

## 7. SIZING THE PV ARRAY

- Daily load energy requirement
- Peak Sun Hours (PSH) of site
- Derating for shade
- PV sub-system efficiency
- Load sub-system efficiency

#### SIZING SOLAR PV + BATTERY STORAGE SYSTEM

- A Daily load energy (wh)
- B Battery system voltage (V)
- C Load sub-system efficiency (ef.) (wiving, battery, inverter)
- D Daily Amphour demand (Ah) = A/B/C
- E PV array size = Wh (A) / PSH / PV system efficiency/Load sub-(actual) PV system efficiency/Load sub-
- F Battery pack apacity = Ah demand (D) x Days of Authory

  Max. Depth of Discharge







## CONTACTME

Glen Morris
Training & Consultancy

glen@solarquip.com.au (61) 419 299 140



http://cleanenergy.org.au - blog

http://solarquip.com/ - training courses

http://smartenergylab.com.au - the "Lab"