

Off-Grid System Sizing

When too big is never big enough

Why Off-Grid?

- no accessible utility grid
- cheaper to build SPS than connect
- total cost of ownership
- energy security
- life-style choice
- leaving the grid
- "preppers" preparing for the end

Growth of off-grid systems in Australia

Step 1: client objective

- safe, reliable power
- cost effective (cheaper than grid connection)
- environmentally sustainable
- dislike the power utilities
- pre-purchase 10yrs+ power
- health security (i.e. dialysis machine)

Step 2: energy efficiency

- cost of off-grid system approximately \$2,000-\$4,000/kWh/day of energy required
- use <u>energyrating.gov.au</u> to help select best appliances
- use customer load sheet to identify "problem" appliances (old fridge/old aircon/ septic system/water pump/swampy)
- if possible suggest passive solar building design to minimise active heating and cooling.

Step 3: planning

roof layout
cable routing
battery location
switchboard location

Step 5: post installation monitoring

System Configurations

a.c. coupled

d.c. coupled

both

DIESEL + SOLAR + BATTERY HYBRID SYSTEM 10 or 30

- GEN. SOURCE ENERGY
- SOLAR SOURCE ENERGY
- BATTERY STORED ENERCY

NB. SOLAR + BATTERY SYSTEM OPERATES WITHOUT GENSET

DIESEL + SOLAR + BATTERY HYBRID SYSTEM 10 or 30

genset may be run at near constant load or even intermittently two independent sources of base load power (gen bottery)

inverter pass-through capacity limits supported loads requires coordination between generating sources (coms or freq/power entrl)

VARIOUS LOAD CHARACTERISTICS OF DOMESTIC DWELLINGS

SURPLUS SOLAR ENERGY BALANCED ACROSS MULTIPLE STORAGE

AKA "THE VIRTUAL BATTERY"

- A.C.
- GEN. SOURCE ENERGY
- SOLAR SOURCE ENERGY
- BATTERY STORED ENERCY

VARIOUS LOAD CHARACTERISTICS OF DOMESTIC DWELLINGS

WITH SMOOTHING SUPPLIED BY NETWORK STORAGE

BATTERY STORED ENERCY

COMMUNITY OWNED POWER CENERATION AND STORAGE SYSTEM AKA "SOCIALISING ENERGY"

VOLT-WATT RESPONSE MODE (AUSTRALIA)

AS/NZS 4777.2:2015 clause 6.3.2.2 Volt—watt response mode

AS/NZS 4777.2:2015 clause 6.3.2.3 Volt–var response mode

POWER-FREQUENCY RESPONSE MODE

AS/NZS 4777.2:2015 clause 7.5.3.1 Response to an increase in frequency

Smart Energy Lab

> Portfolios > Smart Energy Lab

SIZING SOLAR PV + BATTERY STORAGE SYSTEM

- A Daily load energy (Wh)
- Battery system voltage (V)
- C Load sub-system efficiency (eff.)
 (wiving, battery, inverter)
- D Daily Amphour demand (Ah) = A/B/C
- E PV array size = Wh (A) / PSH / PV system efficiency / Load sub-(actual) - system eff(c)
- F Battery pack capacity = Ah alemand (D) x Days of Authory

 Max. Depth of Discharge

Smart Loads

- grid frequency dependent hot water element (power inverse to frequency rise)
- grid frequency controlled circuits (dump loads)
- grid voltage controlled circuits (dump loads)
- solar to hot water diverters

MOORA MOORA COMMUNITY

Sharing energy since 1973 (microgrid/off-grid)

CONTACTME

Glen Morris
Training & Consultancy

glen@solarquip.com.au (61) 419 299 140

http://cleanenergy.org.au - blog

http://solarquip.com/ - training courses

http://smartenergylab.com.au - the "Lab"